论文标题
模块化协变量的度界限
Degree bounds for modular covariants
论文作者
论文摘要
令$ v,w $是在特征$ p $的字段$ k $上的循环组$ g $ p $的代表。协变量的模块$ k [v,w]^g $是$ g $ equivariant多项式地图$ v \ rightarrow w $的集合,并且是$ k [v]^g $的模块。我们给出了Noether绑定的$β(k [v,w]^g,k [v]^g)$的公式,即最低度$ d $,使得$ k [v,w]^g $是通过$ d $的元素在$ k [v]^g $上生成的。
Let $V,W$ be representations of a cyclic group $G$ of prime order $p$ over a field $k$ of characteristic $p$. The module of covariants $k[V,W]^G$ is the set of $G$-equivariant polynomial maps $V \rightarrow W$, and is a module over $k[V]^G$. We give a formula for the Noether bound $β(k[V,W]^G,k[V]^G)$, i.e. the minimal degree $d$ such that $k[V,W]^G$ is generated over $k[V]^G$ by elements of degree at most $d$.