论文标题

顶点代数$ \ MATHCAL R^{(P)} $和$ \ MATHCAL V^{(P)} $

The vertex algebras $\mathcal R^{(p)}$ and $\mathcal V^{(p)}$

论文作者

Adamovic, Drazen, Creutzig, Thomas, Genra, Naoki, Yang, Jinwei

论文摘要

在[2]中引入的顶点代数$ v^{(p)} $和$ r^{(p)} $是对数CFT的著名三胞胎代数的非常有趣的亲戚。代数$ v^{(p)} $(分别分别,$ r^{(p)} $)是简单的仿射顶点algebra $ l_k(\ mathfrak {sl} _2 _2)$的很大扩展对于正整数$ p $。在本文中,我们得出了这些代数的结构结果,并证明了来自代表理论和物理学的各种猜想。 我们表明,su(2)在$ v^{(p)} $上充当自动形态,我们将$ v^{(p)} $分解为$ l_k(\ mathfrak {sl} _2 _2 _2)$ - 模块和$ r^{(p)} $作为$ l_k($ l_k($ l_k(p) $ v^{(p)} $的分解表明,$ v^{(p)} $是在s偶尔的上下文中出现的角顶点代数的大级别限制。我们还表明,$ v^{(p)} $的量子减少是[12]中引入的对数Doublet代数$ a^{(p)} $,而$ r^{(p)} $减少$ b^{(p)} $ - algebra of [39]。相反,我们从$ a^{(p)} $和$ a^{(p)} $和$ b^{(p)} $的过程中意识到$ v^{(p)} $和$ r^{(p)} $,通过一个值得称为倒数量子的汉密尔顿减少的过程。作为推论,我们获得了普通$ l_k的类别$ kl_ {k} $(\ mathfrak {sl} _2)$ - 级别$ k = -2+1/p $的模块是一个刚性的顶点tensor类别,等效于类别rep rep $(su(2))$。最终,在所有级别$ k $上完成了$ l_k(\ mathfrak {sl} _2)$的刚性编织张量类别结构。 我们还建立了某些顶点运算符代数扩展的唯一性结果,并使用此结果证明$ r^{(p)} $和$ b^{(p)} $都是某些非主要的$ a $ a $ a $的非主要w- algebras。相同的唯一性结果还表明,$ r^{(p)} $和$ b^{(p)} $是类型$(a_1,d_ {2p})$(a_1,d_ {2p})$和$(a_1,a_1,a_1,a_ {2p-3})的手性代数。

The vertex algebras $V^{(p)}$ and $R^{(p)}$ introduced in [2] are very interesting relatives of the famous triplet algebras of logarithmic CFT. The algebra $V^{(p)}$ (respectively, $R^{(p)}$) is a large extension of the simple affine vertex algebra $L_k(\mathfrak{sl}_2)$ (respectively, $L_k(\mathfrak{sl}_2)$ times a Heisenberg algebra), at level $k=-2+1/p$ for positive integer $p$. In this paper, we derive structural results of these algebras and prove various conjectures coming from representation theory and physics. We show that SU(2) acts as automorphisms on $V^{(p)}$ and we decompose $V^{(p)}$ as an $L_k(\mathfrak{sl}_2)$-module and $R^{(p)}$ as an $L_k(\mathfrak{gl}_2)$-module. The decomposition of $V^{(p)}$ shows that $V^{(p)}$ is the large level limit of a corner vertex algebra appearing in the context of S-duality. We also show that the quantum Hamiltonian reduction of $V^{(p)}$ is the logarithmic doublet algebra $A^{(p)}$ introduced in [12], while the reduction of $R^{(p)}$ yields the $B^{(p)}$-algebra of [39]. Conversely, we realize $V^{(p)}$ and $R^{(p)}$ from $A^{(p)}$ and $B^{(p)}$ via a procedure that deserves to be called inverse quantum Hamiltonian reduction. As a corollary, we obtain that the category $KL_{k}$ of ordinary $L_k(\mathfrak{sl}_2)$-modules at level $k=-2+1/p$ is a rigid vertex tensor category equivalent to a twist of the category Rep$(SU(2))$. This finally completes rigid braided tensor category structures for $L_k(\mathfrak{sl}_2)$ at all levels $k$. We also establish a uniqueness result of certain vertex operator algebra extensions and use this result to prove that both $R^{(p)}$ and $B^{(p)}$ are certain non-principal W-algebras of type $A$ at boundary admissible levels. The same uniqueness result also shows that $R^{(p)}$ and $B^{(p)}$ are the chiral algebras of Argyres-Douglas theories of type $(A_1, D_{2p})$ and $(A_1, A_{2p-3})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源