论文标题

映射代数和ADAMS光谱序列

Mapping algebras and the Adams spectral sequence

论文作者

Blanc, David, Ghosh, Surojit

论文摘要

$ e_2 $ - $ \ mathbf {y} $的$ e_2 $ - 可以用其同胞$ e^\ ast \ mathbf {y} $来描述,以及主要操作$ e^\ ast ast ast ast \ astbf {e} $的动作\ Mathbf {H} \ Mathbb {F} _p $。我们展示了如何按照高阶截断的$ \ mathbf {e} $相似地描述频谱序列的较高项 - $ \ mathbf {y} $ $ \; - \; $是函数spectra $ \ operatorName {fun}(\ m马理{y},\ mathbf {m})$的$ \ mathbf {y})$,用于各种$ \ mathbf {e} $ - 模块 - 模块$ \ mathbf {m mathbf {m mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf {m Mathbf} $ \ Mathbf {m}')$。

The $E_2$-term of the Adams spectral sequence for $\mathbf{Y}$ may be described in terms of its cohomology $E^\ast \mathbf{Y}$, together with the action of the primary operations $E^\ast \mathbf{E}$ on it, for ring spectra such as $\mathbf{E} = \mathbf{H}\mathbb{F}_p$. We show how the higher terms of the spectral sequence can be similarly described in terms of the higher order truncated $\mathbf{E}$-mapping algebra for $\mathbf{Y}$ $\; - \;$ that is truncations of the function spectra $\operatorname{Fun}(\mathbf{Y}, \mathbf{M})$ for various $\mathbf{E}$-modules $\mathbf{M}$, equipped with the action of $\operatorname{Fun}(\mathbf{M}, \mathbf{M}')$ on them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源