论文标题
RCD(K,N)空间的可纠正性通过$δ$ - 拆卸地图
Rectifiability of RCD(K,N) spaces via $δ$-splitting maps
论文作者
论文摘要
在本说明中,我们通过$Δ$ - 插图图提供了新的RCD(K,N)空间可重新讨论性的证据,并给出基本维度的较低的半度性证明。该论点的启发是受RICCI限制的Cheeger-Colding理论的启发,并依赖于Gigli开发的第二阶差分微积分以及Ambrosio-Honda的收敛性和稳定性结果。
In this note we give new proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via $δ$-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.