论文标题
延迟和数据包耐受性的多阶段分布式平均跟踪
Delay and Packet-Drop Tolerant Multi-Stage Distributed Average Tracking in Mean Square
论文作者
论文摘要
本文研究了与离散时间线性时间传播的多个代理网络有关的分布式平均跟踪问题,该网络同时受到输入延迟,随机数据包滴和参考噪声。该问题等于延迟和数据包耐受算法的集成设计,并确定了代理状态和参考信号平均值之间跟踪误差的最终上限。调查是由设计几乎可以实现的平均跟踪算法的目的驱动的,从而扩展了文献中现有的作品,这些算法在很大程度上忽略了上述不确定性。为此,采用了Kalman过滤,多阶段共识过滤和预测性控制的技术,从而产生了一种简单而又令人震惊的分布式平均跟踪算法,该算法可用于初始化错误,并允许在通信/计算成本成本和固定状态跟踪错误之间进行权衡。由于不同控制组件之间的固有耦合,收敛分析是显着挑战的。然而,据透露,算法参数的允许值依赖于期望网络的最大程度,而收敛速度取决于同一网络拓扑的第二小特征值。理论结果的有效性通过数值示例验证。
This paper studies the distributed average tracking problem pertaining to a discrete-time linear time-invariant multi-agent network, which is subject to, concurrently, input delays, random packet-drops, and reference noise. The problem amounts to an integrated design of delay and packet-drop tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multi-stage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling distributed average tracking algorithm that is robust to initialization error and allows the trade-off between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.