论文标题

随机兴奋系统的动力学,并缓慢适应反馈

Dynamics of a stochastic excitable system with slowly adapting feedback

论文作者

Franović, Igor, Yanchuk, Serhiy, Eydam, Sebastian, Bačić, Iva, Wolfrum, Matthias

论文摘要

我们研究了一个可激发的活动旋转器,并缓慢适应非线性反馈和噪声。根据适应和噪音水平,该系统可能显示出噪声引起的尖峰,噪音扰动的振荡或随机破坏。我们展示了系统如何在这些动力学方面之间表现出过渡,以及如何增强或抑制连贯的共振或有效控制随机爆发的特征。该设置可以被视为恢复变量缓慢的神经元的范式模型,也可以将其视为在非线性控制机制的影响下作为兴奋的系统。我们采用了多种时间尺度方法,将经典的绝热消除与快速振荡和通过相应的固定固定fokker-Planck方程进行噪声引起的波动的随机平均。这使我们能够对减少的慢系统进行数值分叉分析,并确定与不同类型的动力学相关的参数区域。特别是,我们证明了存在性区域的存在,其中噪声引起的静止和振荡状态之间的切换会导致随机爆发。

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic busting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance, or effectively control the features of the stochastic bursting. The setup can be considered as a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源