论文标题
差异共同体与差异共同体,用于尼科夫塔后塔的M理论和差异升降机
Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers
论文作者
论文摘要
我们通过共同体对M理论形式字段的描述与通过积分共同体学进行了比较。将后者提升为前者的条件是使用梗阻理论以尼科夫塔的形式鉴定出来的,其中扭转起着核心作用。这些条件的一个子集证明与现有的一致性条件兼容,而其余的是新的,并指向M理论的进一步一致性要求。引入几何形状会导致后尼科夫塔的差异化,这应该引起独立的兴趣。这提供了另一种确认,即共同体是描述这些领域的适当广泛的共同体学理论。
We compare the description of the M-theory form fields via cohomotopy versus that via integral cohomology. The conditions for lifting the latter to the former are identified using obstruction theory in the form of Postnikov towers, where torsion plays a central role. A subset of these conditions is shown to correspond compatibly to existing consistency conditions, while the rest are new and point to further consistency requirements for M-theory. Bringing in the geometry leads to a differential refinement of the Postnikov tower, which should be of independent interest. This provides another confirmation that cohomotopy is the proper generalized cohomology theory to describe these fields.