论文标题
算术双曲线直径的结合
A bound for diameter of arithmetic hyperbolic orbifolds
论文作者
论文摘要
令$ o $为封闭的$ n $二维算术(真实或复杂)双曲线。我们表明,$ o $的直径在上面由$$ \ frac {c_1 \ log vol(o) + c_2} {h(o)},$$,其中$ h(o)$是$ o $,$ o $,$ vol(o)$的cheeger常数,$ o $,$ c_1 $,$ c_1 $,$ c_2 $依赖于$ n $。
Let $O$ be a closed $n$-dimensional arithmetic (real or complex) hyperbolic orbifold. We show that the diameter of $O$ is bounded above by $$\frac{c_1\log vol(O) + c_2}{h(O)},$$ where $h(O)$ is the Cheeger constant of $O$, $vol(O)$ is its volume, and constants $c_1$, $c_2$ depend only on $n$.