论文标题

通过机器学习短期波动电流估算熵的生产

Estimating entropy production by machine learning of short-time fluctuating currents

论文作者

Otsubo, Shun, Ito, Sosuke, Dechant, Andreas, Sagawa, Takahiro

论文摘要

热力学不确定性关系(TURS)是仅使用波动电流的平均值和方差对熵产生速率的下限。由于TURS并未参考随机动力学的全部细节,因此可以使用TURS来估算与动力学相对应的有限轨迹数据的熵生产速率。在这里,我们研究了一个理论框架,用于使用TURS以及机器学习技术估算熵生产速率,而没有先验了解随机动力学的参数。具体而言,我们为短时区域提供了一个TUR,并证明它不仅可以为Langevin Dynamics提供确切的值,如果观察到的电流是最佳选择的。该公式自然包括对turs的概括,并在自主相互作用下的子系统的部分熵产生,这揭示了估计的层次结构。然后,我们基于短期TUR和机器学习技术(例如梯度上升)构建估计器。通过执行数值实验,我们证明了我们的学习协议即使在非线性Langevin动力学中也可以很好地表现。我们还讨论了马尔可夫跳跃过程的案例,其中确切的估计通常是不可能的。我们的结果提供了一个平台,该平台可以应用于包括生物系统在内的平衡中的一系列随机动力学。

Thermodynamic uncertainty relations (TURs) are the inequalities which give lower bounds on the entropy production rate using only the mean and the variance of fluctuating currents. Since the TURs do not refer to the full details of the stochastic dynamics, it would be promising to apply the TURs for estimating the entropy production rate from a limited set of trajectory data corresponding to the dynamics. Here we investigate a theoretical framework for estimation of the entropy production rate using the TURs along with machine learning techniques without prior knowledge of the parameters of the stochastic dynamics. Specifically, we derive a TUR for the short-time region and prove that it can provide the exact value, not only a lower bound, of the entropy production rate for Langevin dynamics, if the observed current is optimally chosen. This formulation naturally includes a generalization of the TURs with the partial entropy production of subsystems under autonomous interaction, which reveals the hierarchical structure of the estimation. We then construct estimators on the basis of the short-time TUR and machine learning techniques such as the gradient ascent. By performing numerical experiments, we demonstrate that our learning protocol performs well even in nonlinear Langevin dynamics. We also discuss the case of Markov jump processes, where the exact estimation is shown to be impossible in general. Our result provides a platform that can be applied to a broad class of stochastic dynamics out of equilibrium, including biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源