论文标题
吉布斯半群的非自主扰动的解决方案操作员
Solution Operator for Non-Autonomous Perturbation of Gibbs Semigroup
论文作者
论文摘要
该论文专门用于吉布斯半群在可分离的希尔伯特空间上的非自主扰动的线性动力学。结果表明,进化家族{u(t,s)} 0 $ \ le $ s $ \ le $ t求解求解非自主cauchy问题可以通过产品公式近似痕迹 - 核心拓扑。产品公式近似值的收敛速率{u n(t,s)} {0 $ \ le $ s $ \ le $ \ le $ t,n $ \ ge $ 1}与解决方案操作员{u(t,s)} {0 $ \ le \ le $ s $ s $ \ le $ t}也已建立。
The paper is devoted to a linear dynamics for non-autonomous perturbation of the Gibbs semigroup on a separable Hilbert space. It is shown that evolution family {U(t, s)} 0$\le$s$\le$t solving the non-autonomous Cauchy problem can be approximated in the trace-norm topology by product formulae. The rate of convergence of product formulae approximants {U n (t, s)} {0$\le$s$\le$t,n$\ge$1} to the solution operator {U(t, s)} {0$\le$s$\le$t} is also established.