论文标题

超声图像中的乳房病变分割有限的注释数据

Breast lesion segmentation in ultrasound images with limited annotated data

论文作者

Behboodi, Bahareh, Amiri, Mina, Brooks, Rupert, Rivaz, Hassan

论文摘要

超声(US)是由于其低成本,安全性和非侵入性特征,是诊断和手术干预措施中最常用的成像方式之一。由于存在斑点噪声,因此美国图像分割目前是一个独特的挑战。由于手动细分需要大量的努力和时间,因此自动分割算法的发展吸引了研究人员的关注。尽管基于卷积神经网络的最新方法表现出了令人鼓舞的表现,但它们的成功依赖于大量培训数据的可用性,这对于许多应用而言非常困难。因此,在这项研究中,我们建议将模拟的图像和自然图像用作辅助数据集,以预先培训我们的分割网络,然后对体内数据有限进行微调。我们表明,与从头开始的训练相比,预先训练的网络的微调可提高21%。我们还证明,如果可以使用相同数量的自然和模拟我们的图像,则在模拟数据上进行预训练。

Ultrasound (US) is one of the most commonly used imaging modalities in both diagnosis and surgical interventions due to its low-cost, safety, and non-invasive characteristic. US image segmentation is currently a unique challenge because of the presence of speckle noise. As manual segmentation requires considerable efforts and time, the development of automatic segmentation algorithms has attracted researchers attention. Although recent methodologies based on convolutional neural networks have shown promising performances, their success relies on the availability of a large number of training data, which is prohibitively difficult for many applications. Therefore, in this study we propose the use of simulated US images and natural images as auxiliary datasets in order to pre-train our segmentation network, and then to fine-tune with limited in vivo data. We show that with as little as 19 in vivo images, fine-tuning the pre-trained network improves the dice score by 21% compared to training from scratch. We also demonstrate that if the same number of natural and simulation US images is available, pre-training on simulation data is preferable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源