论文标题

使用多参数MRI数据的贝叶斯空间模型用于体素的前列腺癌分类

Bayesian Spatial Models for Voxel-wise Prostate Cancer Classification Using Multi-parametric MRI Data

论文作者

Jin, Jin, Zhang, Lin, Leng, Ethan, Metzger, Gregory J., Koopmeiners, Joseph S.

论文摘要

多参数磁共振成像(MPMRI)在前列腺癌的诊断中起着越来越重要的作用。已经提出了各种计算机辅助检测算法​​,用于通过结合来自MPMRI数据组件的信息来进行自动前列腺癌检测。但是,MPMRI的其他特征,包括MPMRI参数中体素和患者之间异质性之间的空间相关性,这些特征在MPMRI参数中尚未在文献中得到充分探索,但如果杠杆率适当,则可能会改善癌症检测。本文提出了新型的素素贝叶斯分类剂,用于前列腺癌,该分类剂是MPMRI中空间相关性和患者间异质性的原因。由于数据的极高维度,对空间相关性进行建模是具有挑战性的,我们考虑使用最近的邻居高斯工艺(NNGP),基于结的减少级别近似值和有条件的自动性(CAR)模型的三种计算有效方法。通过在MPMRI参数模型上添加主题特定的随机截距来解释患者间的异质性。仿真结果表明,正确对空间相关性和患者之间的异质性进行正确建模可提高分类精度。对体内数据的应用说明,通过使用NNGP和减少级别近似的空间建模(而不是CAR模型)可以改善分类,而对患者间异质性进行建模并不能进一步改善我们的分类器。在我们提出的模型中,考虑到其稳健的分类准确性和高计算效率,建议使用基于NNGP的模型。

Multi-parametric magnetic resonance imaging (mpMRI) plays an increasingly important role in the diagnosis of prostate cancer. Various computer-aided detection algorithms have been proposed for automated prostate cancer detection by combining information from various mpMRI data components. However, there exist other features of mpMRI, including the spatial correlation between voxels and between-patient heterogeneity in the mpMRI parameters, that have not been fully explored in the literature but could potentially improve cancer detection if leveraged appropriately. This paper proposes novel voxel-wise Bayesian classifiers for prostate cancer that account for the spatial correlation and between-patient heterogeneity in mpMRI. Modeling the spatial correlation is challenging due to the extreme high dimensionality of the data, and we consider three computationally efficient approaches using Nearest Neighbor Gaussian Process (NNGP), knot-based reduced-rank approximation, and a conditional autoregressive (CAR) model, respectively. The between-patient heterogeneity is accounted for by adding a subject-specific random intercept on the mpMRI parameter model. Simulation results show that properly modeling the spatial correlation and between-patient heterogeneity improves classification accuracy. Application to in vivo data illustrates that classification is improved by spatial modeling using NNGP and reduced-rank approximation but not the CAR model, while modeling the between-patient heterogeneity does not further improve our classifier. Among our proposed models, the NNGP-based model is recommended considering its robust classification accuracy and high computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源