论文标题

对有限组的元素顺序的总和的概括

A generalization of a result on the sum of element orders of a finite group

论文作者

Tărnăuceanu, Marius

论文摘要

令$ g $为有限的组,让$ψ(g)$表示$ g $的元素订单之和。众所周知,在$ n $的组集组中,$ n $是一个正整数的最大值$φ$将发生在循环组$ c_n $上。对于Nilpotent群体,我们证明了该结果的自然概括,通过用$ g $的元素订单与元素订单相对于某个$ g $的元素订单而获得。

Let $G$ be a finite group and let $ψ(G)$ denote the sum of element orders of $G$. It is well-known that the maximum value of $φ$ on the set of groups of order $n$, where $n$ is a positive integer, will occur at the cyclic group $C_n$. For nilpotent groups, we prove a natural generalization of this result, obtained by replacing the element orders of $G$ with the element orders relative to a certain subgroup $H$ of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源