论文标题
使用无标签组织的微结构和多重虚拟染色对组织学染色的数字合成
Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue
论文作者
论文摘要
组织学染色是用于诊断各种疾病的至关重要的步骤,并且已在一个多世纪以来用于与组织切片形成对比,从而使组织成分可见,可通过医学专家可见。但是,这个过程是耗时,劳动力密集的,昂贵的,对标本具有破坏性。最近,使用组织污渍特定的深神经网络证明了虚拟染色的无标记组织切片的能力,完全避免了组织化学染色步骤。在这里,我们提出了一个新的基于深度学习的框架,该框架使用无标签的组织生成了几乎染色的图像,在该框架下,遵循用户定义的微结构图,在其中合并了不同的污渍。该方法使用单个深神网络,该网络在其输入中接收两个不同的信息来源:(1)无标签组织样品的自动荧光图像,以及(2)代表不同污渍的所需显微镜图的数字染色矩阵,可在同一组织部分几乎生成。该数字染色矩阵还用于实际上混合现有的污渍,以数字化合成新的组织学污渍。我们使用未标记的肾脏组织切片训练并盲目地测试了这个虚拟染色网络,以生成苏木精和曙红(H&E),琼斯银污染以及Masson的Trichrome染色的微观结构组合。使用单个网络,这种方法将无标记组织的虚拟染色与多种类型的污渍和铺平了铺平的方式,为可以在相同的组织横截面上创建的新数字组织学染色铺平了道路,目前与标准的组织化学染色方法不可行。
Histological staining is a vital step used to diagnose various diseases and has been used for more than a century to provide contrast to tissue sections, rendering the tissue constituents visible for microscopic analysis by medical experts. However, this process is time-consuming, labor-intensive, expensive and destructive to the specimen. Recently, the ability to virtually-stain unlabeled tissue sections, entirely avoiding the histochemical staining step, has been demonstrated using tissue-stain specific deep neural networks. Here, we present a new deep learning-based framework which generates virtually-stained images using label-free tissue, where different stains are merged following a micro-structure map defined by the user. This approach uses a single deep neural network that receives two different sources of information at its input: (1) autofluorescence images of the label-free tissue sample, and (2) a digital staining matrix which represents the desired microscopic map of different stains to be virtually generated at the same tissue section. This digital staining matrix is also used to virtually blend existing stains, digitally synthesizing new histological stains. We trained and blindly tested this virtual-staining network using unlabeled kidney tissue sections to generate micro-structured combinations of Hematoxylin and Eosin (H&E), Jones silver stain, and Masson's Trichrome stain. Using a single network, this approach multiplexes virtual staining of label-free tissue with multiple types of stains and paves the way for synthesizing new digital histological stains that can be created on the same tissue cross-section, which is currently not feasible with standard histochemical staining methods.