论文标题

贝叶斯对控件嵌套子集下的治疗效果推断

Bayesian inference for treatment effects under nested subsets of controls

论文作者

Woody, Spencer, Carvalho, Carlos M., Murray, Jared S.

论文摘要

在构建模型以估计治疗的因果效应时,有必要控制其他可能具有混淆作用的因素。但是,由于无忽视性假设是不可测试的,因此通常不清楚哪种最小控件集是合适的 - 就像模型中其适当的功能形式一样 - 效果估计可以对这些选择敏感。在这种情况下,一种常见的方法是拟合多种模型,每个模型都有不同的控制规范(在假设可用的控制措施足够但可能并非所有必要的治疗效果的必要条件下),但是在多个结果后分布中,很难对治疗效果进行调和。因此,我们提出了一种两阶段的方法,以衡量对控制规范效应估计的灵敏度。在第一阶段,模型与所有可用的控件都使用先验选择的所有可用控件,以调整混淆。在第二阶段,在完整模型下使用投影后侧的嵌套对控件集的子模型下的治疗效果计算后验分布,提供有效的贝叶斯推断。我们演示了如何使用我们的方法来检测数据集中的有影响力的混杂因素,并将其应用于观察性研究的敏感性分析,以测量合法堕胎对犯罪率的影响。

When constructing a model to estimate the causal effect of a treatment, it is necessary to control for other factors which may have confounding effects. Because the ignorability assumption is not testable, however, it is usually unclear which minimal set of controls is appropriate -- as is their appropriate functional form in the model -- and effect estimation can be sensitive to these choices. A common approach in this case is to fit several models, each with a different control specification (under the assumption that the available controls are sufficient but possibly not all necessary to deconfound the treatment effect), but it is difficult to reconcile inference for the treatment effect under the multiple resulting posterior distributions. Therefore we propose a two-stage approach to measure the sensitivity of effect estimation with respect to control specification. In the first stage, a model is fit with all available controls using a prior carefully selected to adjust for confounding. In the second stage, posterior distributions are calculated for the treatment effect under submodels of nested sets of controls using projected posteriors under the full model, providing valid Bayesian inference. We demonstrate how our approach can be used to detect influential confounders in a dataset, and apply it in a sensitivity analysis of an observational study measuring the effect of legalized abortion on crime rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源