论文标题
对环境行为的界限进行反示例指导学习
Counter-example Guided Learning of Bounds on Environment Behavior
论文作者
论文摘要
人们对建立与复杂环境相互作用的自主系统的兴趣越来越大。与获得此类环境的准确模型相关的困难对评估和保证系统性能的任务构成了挑战。我们提出了一个数据驱动的解决方案,该解决方案允许在没有环境的准确模型的情况下评估系统以确保规格的符合度。我们的方法涉及使用数据和系统所需行为的规范来学习环境行为的保守反应性约束。首先,该方法首先要学习一种保守的反应性,以限制环境的行为,该行为以很高的可能性捕获其可能的行为。然后使用该界限来协助验证,如果验证在此界限下失败,则该算法将返回反例以显示失败的发生,然后使用这些算法来完善界限。我们通过两个案例研究来证明该方法的适用性:i)为玩具多机器人系统验证控制器,ii)验证鉴于现实世界中的人类驾驶数据,在换车道中验证了人类机器人相互作用的实例。
There is a growing interest in building autonomous systems that interact with complex environments. The difficulty associated with obtaining an accurate model for such environments poses a challenge to the task of assessing and guaranteeing the system's performance. We present a data-driven solution that allows for a system to be evaluated for specification conformance without an accurate model of the environment. Our approach involves learning a conservative reactive bound of the environment's behavior using data and specification of the system's desired behavior. First, the approach begins by learning a conservative reactive bound on the environment's actions that captures its possible behaviors with high probability. This bound is then used to assist verification, and if the verification fails under this bound, the algorithm returns counter-examples to show how failure occurs and then uses these to refine the bound. We demonstrate the applicability of the approach through two case-studies: i) verifying controllers for a toy multi-robot system, and ii) verifying an instance of human-robot interaction during a lane-change maneuver given real-world human driving data.