论文标题
离散状态空间的主动推断:合成
Active inference on discrete state-spaces: a synthesis
论文作者
论文摘要
主动推断是生物或人工制剂中的规范原则承保感知,行动,计划,决策和学习。从其成立开始,其相关的过程理论就已经开始融入复杂的生成模型,从而模拟了广泛的复杂行为。由于有效推断的连续发展,通常很难看到其基本原则与过程理论和实际实施之间的关系。在本文中,我们试图通过对离散状态空间模型的主动推断提供完整的数学合成来弥合这一差距。该技术摘要提供了该理论的概述,从第一原理中得出了神经元动态,并将这种动力学与生物过程联系起来。此外,本文提供了一个基本的构建块,以了解混合生成模型的主动推断。允许连续的感觉为离散表示。本文可以使用如下:指导研究涉及杰出挑战的研究,有关如何实施主动推断以模拟实验行为的实用指南,或者指向各种可用于进行经验预测的各种硅内神经生理学反应的指针。
Active inference is a normative principle underwriting perception, action, planning, decision-making and learning in biological or artificial agents. From its inception, its associated process theory has grown to incorporate complex generative models, enabling simulation of a wide range of complex behaviours. Due to successive developments in active inference, it is often difficult to see how its underlying principle relates to process theories and practical implementation. In this paper, we try to bridge this gap by providing a complete mathematical synthesis of active inference on discrete state-space models. This technical summary provides an overview of the theory, derives neuronal dynamics from first principles and relates this dynamics to biological processes. Furthermore, this paper provides a fundamental building block needed to understand active inference for mixed generative models; allowing continuous sensations to inform discrete representations. This paper may be used as follows: to guide research towards outstanding challenges, a practical guide on how to implement active inference to simulate experimental behaviour, or a pointer towards various in-silico neurophysiological responses that may be used to make empirical predictions.