论文标题

在子空间中找到最稀少的向量:理论,算法和应用

Finding the Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications

论文作者

Qu, Qing, Zhu, Zhihui, Li, Xiao, Tsakiris, Manolis C., Wright, John, Vidal, René

论文摘要

在低维子空间中找到最稀少的矢量(方向)的问题可以被视为稀疏恢复问题的均匀变体,该变体在强大的子空间恢复,字典学习,稀疏的盲目反卷积以及信号处理和机器学习中的许多其他问题中找到了应用。但是,与经典的稀疏恢复问题相反,在子空间中找到最稀少的矢量的最自然公式通常是非convex。在本文中,我们概述了解决此问题的全球非convex优化理论的最新进展,包括对其优化景观的几何分析到解决相关的非convex优化问题的有效优化算法,到机器智能,表示学习和成像科学的应用。最后,我们通过指出一些有趣的未来研究的有趣的开放问题来结束这一评论。

The problem of finding the sparsest vector (direction) in a low dimensional subspace can be considered as a homogeneous variant of the sparse recovery problem, which finds applications in robust subspace recovery, dictionary learning, sparse blind deconvolution, and many other problems in signal processing and machine learning. However, in contrast to the classical sparse recovery problem, the most natural formulation for finding the sparsest vector in a subspace is usually nonconvex. In this paper, we overview recent advances on global nonconvex optimization theory for solving this problem, ranging from geometric analysis of its optimization landscapes, to efficient optimization algorithms for solving the associated nonconvex optimization problem, to applications in machine intelligence, representation learning, and imaging sciences. Finally, we conclude this review by pointing out several interesting open problems for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源