论文标题

基于CNN的实时参数调整,用于优化Denoising滤波器性能

CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

论文作者

Mukherjee, Subhayan, Kottayil, Navaneeth Kamballur, Sun, Xinyao, Cheng, Irene

论文摘要

我们通过使用卷积神经网络(CNN)来预测最佳的滤波器参数值,提出一个新颖的方向,以实时提高基于过滤基于过滤的deno算法的降解质量。我们采用了基于最新的过滤算法BM3D的用例,以演示和验证我们的方法。我们提出并训练一个简单的浅CNN,以实时预测最佳的滤波器参数值,给定输入噪声图像。每个训练示例都由一个嘈杂的输入图像(训练数据)和产生最佳输出(训练标签)的滤波器参数值组成。在流行的BSD68数据集中使用广泛使用的PSNR和SSIM指标的定性和定量结果都表明,CNN引导的BM3D在不同噪声水平上优于原始的,无引导的BM3D。因此,我们提出的方法是对原始BM3D的基于CNN的改进,该改进使用所有图像使用固定的默认参数值。

We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源