论文标题
使用四维Lorentz扫描透射电子显微镜在多晶Fege薄膜中解开磁性和晶粒对比度
Disentangling magnetic and grain contrast in polycrystalline FeGe thin films using four-dimensional Lorentz scanning transmission electron microscopy
论文作者
论文摘要
具有强大的Dzyaloshinkii-Moriya相互作用(DMI)的多晶材料中纳米级手性磁序的研究对于观察晶界和接口处的磁现象的研究很有趣。一种这样的材料是SI上的溅射沉积B20 Fege,该Fege已被积极研究为在可扩展材料平台中低功率,高密度磁性记忆技术的基础。尽管常规的洛伦兹电子显微镜提供了必要的空间分辨率,以探测单晶Fege中的手性磁纹理,但探测溅射B20 FEGE的磁性的磁性更具挑战性,因为亚微米晶体晶粒增加了混杂的对比。我们通过使用电子显微镜像素阵列检测器应用4维lorentz扫描透射电子显微镜来解决解开磁和晶粒对比度的挑战。在分析和数值模型的支持下,我们发现具有多晶粒晶粒的磁性材料的最重要参数是检测器维持大型电子剂量的能力,而具有高动力范围检测器变得极为重要。尽管Si上的溅射B20 Fege中的晶粒尺寸较小,但使用这种方法,我们仍然能够观察到天空的螺旋切换和磁性螺旋在两个相邻的谷物上穿过相邻的晶粒。我们通过假设晶粒具有独特的方向和磁性手性来重现这种效果,并发现磁性螺旋性夫妇伴侣与晶体性手性。我们的成像磁纹理的方法适用于用于旋转的其他薄膜磁铁和内存应用,其中了解如何在多晶材料中容纳磁性秩序很重要。
The study of nanoscale chiral magnetic order in polycrystalline materials with a strong Dzyaloshinkii-Moriya interaction (DMI) is interesting for the observation of magnetic phenomena at grain boundaries and interfaces. One such material is sputter-deposited B20 FeGe on Si, which has been actively investigated as the basis for low-power, high-density magnetic memory technology in a scalable material platform. Although conventional Lorentz electron microscopy provides the requisite spatial resolution to probe chiral magnetic textures in single-crystal FeGe, probing the magnetism of sputtered B20 FeGe is more challenging because the sub-micron crystal grains add confounding contrast. We address the challenge of disentangling magnetic and grain contrast by applying 4-dimensional Lorentz scanning transmission electron microscopy using an electron microscope pixel array detector. Supported by analytical and numerical models, we find that the most important parameter for imaging magnetic materials with polycrystalline grains is the ability for the detector to sustain large electron doses, where having a high-dynamic range detector becomes extremely important. Despite the small grain size in sputtered B20 FeGe on Si, using this approach we are still able to observe helicity switching of skyrmions and magnetic helices across two adjacent grains as they thread through neighboring grains. We reproduce this effect using micromagnetic simulations by assuming that the grains have distinct orientation and magnetic chirality and find that magnetic helicity couples to crystal chirality. Our methodology for imaging magnetic textures is applicable to other thin-film magnets used for spintronics and memory applications, where an understanding of how magnetic order is accommodated in polycrystalline materials is important.