论文标题

在一个受索引编码启发的猜测框架中,隐私 - 私人折衷方案

Privacy-Utility Tradeoff in a Guessing Framework Inspired by Index Coding

论文作者

Liu, Yucheng, Ding, Ni, Sadeghi, Parastoo, Rakotoarivelo, Thierry

论文摘要

本文使用受索引编码启发的系统模型进行了单端多末端猜测(估算)框架中隐私和实用性的权衡。数据策展人有$ n $独立的离散资源。有$ m $合法的用户和一个对手,每个用户都有有关来源的一些附带信息。数据策展人向合法用户广播源头的扭曲函数,这也被对手听到了。在实用程序方面,每个合法的用户都希望完美地重建一些未知来​​源,并在其余未知来源的估计正确性方面获得一定的收益。在隐私方面,数据策展人希望最大程度地减少最大泄漏:对手在收到广播数据后估计其未知来源的任何目标函数时的最糟糕的猜测增益。鉴于系统设置,我们得出了对对手的最大泄漏的基本性能下限,这是受到索引编码问题的混乱图和性能界限的启发。我们还详细介绍了一种贪婪的隐私增强机制,该机制灵感来自信息瓶颈和隐私漏斗问题中的聚集聚类算法。

This paper studies the tradeoff in privacy and utility in a single-trial multi-terminal guessing (estimation) framework using a system model that is inspired by index coding. There are $n$ independent discrete sources at a data curator. There are $m$ legitimate users and one adversary, each with some side information about the sources. The data curator broadcasts a distorted function of sources to legitimate users, which is also overheard by the adversary. In terms of utility, each legitimate user wishes to perfectly reconstruct some of the unknown sources and attain a certain gain in the estimation correctness for the remaining unknown sources. In terms of privacy, the data curator wishes to minimize the maximal leakage: the worst-case guessing gain of the adversary in estimating any target function of its unknown sources after receiving the broadcast data. Given the system settings, we derive fundamental performance lower bounds on the maximal leakage to the adversary, which are inspired by the notion of confusion graph and performance bounds for the index coding problem. We also detail a greedy privacy enhancing mechanism, which is inspired by the agglomerative clustering algorithms in the information bottleneck and privacy funnel problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源