论文标题

在新的可集成(2+1) - 维kundu-mukherjee-naskar模型中,更高维度的局部和周期性波动力学

Higher dimensional localized and periodic wave dynamics in a new integrable (2+1)-dimensional Kundu-Mukherjee-Naskar model

论文作者

Singh, Sudhir, Mukherjee, Abhik, Sakkaravarthi, K., Murugesan, K.

论文摘要

在本文中,研究了一种新的可集成(2+1) - 维kundu-mukherjee-naskar模型,该模型是众所周知的非线性schrödinger方程的一种变体。明亮黑暗的光学孤子以及周期性波,复杂的和有理解决方案是通过使用广义的行驶波分析,Jacobian-纤维化函数,Riccati方程和ANSATZ方法来构建的。此外,通过探索使用图形演示的任意物理参数的重要性来研究这些明亮/深/深光学孤子和复合孔/周期波的动力学。该集成系统的较高维度非线性波解应该在不同的物理系统中具有有用的应用,包括光纤中束传播的动力学,磁化等离子体中的离子声波和深水流氓波浪中的离子声波。

In this article, a new integrable (2+1)-dimensional Kundu-Mukherjee-Naskar model which is a variant of the well known nonlinear Schrödinger equation is investigated. Bright-dark optical solitons along with periodic waves, complexiton and rational solutions are constructed by employing a generalized traveling wave analysis, Jacobian-elliptic function, Riccati equation and ansatz approach. Further, the dynamics of these bright/dark optical solitons and complexiton/periodic waves are studied by exploring the importance of arbitrary physical parameters with graphical demonstrations for a clear understanding. The obtained higher dimensional nonlinear wave solutions of this integrable system shall have useful applications in different physical systems including the dynamics of beam propagation in optical fibers, ion-acoustic waves in magnetized plasma and deep water oceanic rogue waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源