论文标题

可移动的椭圆方程式的可移动集,并具有musielak-orlicz增长

Removable sets in elliptic equations with Musielak-Orlicz growth

论文作者

Chlebicka, Iwona, Karppinen, Arttu

论文摘要

我们用内在的Hausdorff度量来表征Hölder连续解决方案的可移动套件的大小,这些解决方案具有musielak-orlicz生长的椭圆方程。在一般情况下,我们提供了一种优雅的度量形式,该措施捕获(作为特殊情况)的经典结果,略微完善了为可变指数和双相空间中规定的问题提供的问题,并基本上改善了Orlicz情况下的已知措施。

We characterize, in the terms of intrinsic Hausdorff measures, the size of~removable sets for Hölder continuous solutions to elliptic equations with Musielak-Orlicz growth. In the general case we provide an elegant form of the measure that captures -- as special cases -- the classical results, slightly refines the ones provided for problems stated in the variable exponent and double phase spaces and essentially improves the known one in the Orlicz case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源