论文标题
多项式生长的广义schrödinger运营商沿曲线的收敛问题
Convergence problems along curves for generalized Schrödinger operators with polynomial growth
论文作者
论文摘要
在本文中,我们建立了一类具有多项式增长的广义Schrödinger运算符的功能平滑度与沿曲线的收敛速率之间的关系。我们表明,收敛速率仅取决于相位函数的生长条件和曲线的规律性。我们的结果可以应用于广泛的运营商。特别是,建立了具有非均匀相位功能的一类普遍的Schrödinger运算符的收敛结果,然后建立了收敛速率。
In this paper we build the relationship between smoothness of the functions and convergence rate along curves for a class of generalized Schrödinger operators with polynomial growth. We show that the convergence rate depends only on the growth condition of the phase function and regularity of the curve. Our result can be applied to a wide class of operators. In particular, convergence results along curves for a class of generalized Schrödinger operators with non-homogeneous phase functions is built and then the convergence rate is established.