论文标题
Euler-Heisenberg方法中的Multiloop Qed
Multiloop QED in the Euler-Heisenberg approach
论文作者
论文摘要
我总结了有关Euler-Heisenberg Lagrangian及其对标量和旋转QED的多核校正,以各种类型的恒定字段以及各个维度的了解。特别关注拉格朗日弱场扩张的渐近特性,通过Borel求和与Schwinger配对的创造有关,以及Euler-Heisenberg假想部分的“凸起构想”的状态。
I summarize what is known about the Euler-Heisenberg Lagrangian and its multiloop corrections for scalar and spinor QED, in various types of constant fields, and in various dimensions. Particular attention is given to the asymptotic properties of the weak-field expansion of the Lagrangian, which via Borel summation is related to Schwinger pair-creation, and the status of the "exponentiation conjecture" for the imaginary part of the Euler-Heisenberg to all loop orders.