论文标题
$(s,s+d,\ dots,s+pd)$ - 核心分区和理性的motzkin路径
The $(s,s+d,\dots,s+pd)$-core partitions and the rational Motzkin paths
论文作者
论文摘要
在本文中,我们提出了$(s+d,d)$ - abacus $(s,s+d,\ dots,s+pd)$ - 核心分区,并在$(s,s+d,s+d,\ dots,s+pd,s+pd)$ - 核心分区和类型$(S型$(S+d d,d,-d)$(s+d,s+dots,s+dots,s+dots,s+dots,s+dots)之间。该结果不仅给出了$(s,s+d,\ dots,s+pd)$ - 核心分区的晶格路径解释,而且还用封闭的公式对其进行计数。另外,我们枚举$(s,s+1,\ dots,s+p)$ - 带有$ k $ corners和self-conconjugate $(s,s+1,\ dots,s+p)$ - 核心分区的核心分区。
In this paper, we propose an $(s+d,d)$-abacus for $(s,s+d,\dots,s+pd)$-core partitions and establish a bijection between the $(s,s+d,\dots,s+pd)$-core partitions and the rational Motzkin paths of type $(s+d,-d)$. This result not only gives a lattice path interpretation of the $(s,s+d,\dots,s+pd)$-core partitions but also counts them with a closed formula. Also we enumerate $(s,s+1,\dots,s+p)$-core partitions with $k$ corners and self-conjugate $(s,s+1,\dots,s+p)$-core partitions.