论文标题

$(s,s+d,\ dots,s+pd)$ - 核心分区和理性的motzkin路径

The $(s,s+d,\dots,s+pd)$-core partitions and the rational Motzkin paths

论文作者

Cho, Hyunsoo, Huh, JiSun, Sohn, Jaebum

论文摘要

在本文中,我们提出了$(s+d,d)$ - abacus $(s,s+d,\ dots,s+pd)$ - 核心分区,并在$(s,s+d,s+d,\ dots,s+pd,s+pd)$ - 核心分区和类型$(S型$(S+d d,d,-d)$(s+d,s+dots,s+dots,s+dots,s+dots,s+dots)之间。该结果不仅给出了$(s,s+d,\ dots,s+pd)$ - 核心分区的晶格路径解释,而且还用封闭的公式对其进行计数。另外,我们枚举$(s,s+1,\ dots,s+p)$ - 带有$ k $ corners和self-conconjugate $(s,s+1,\ dots,s+p)$ - 核心分区的核心分区。

In this paper, we propose an $(s+d,d)$-abacus for $(s,s+d,\dots,s+pd)$-core partitions and establish a bijection between the $(s,s+d,\dots,s+pd)$-core partitions and the rational Motzkin paths of type $(s+d,-d)$. This result not only gives a lattice path interpretation of the $(s,s+d,\dots,s+pd)$-core partitions but also counts them with a closed formula. Also we enumerate $(s,s+1,\dots,s+p)$-core partitions with $k$ corners and self-conjugate $(s,s+1,\dots,s+p)$-core partitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源