论文标题

$ f(\ Mathcal {g})$带有Tolman-Kuchowicz SpaceTime的恒星结构

Stellar Structures in $f(\mathcal{G})$ Gravity with Tolman-Kuchowicz Spacetime

论文作者

Shamir, M. Farasat, Naz, Tayyaba

论文摘要

本文致力于通过利用Tolman-Kuchowicz Spacetime [1,2]来探索恒星对象的一些相对论配置,以探索静态球形对称结构的静态对称结构。在存在各向异性物质分布的情况下,我们通过考虑度量电位的物理有效表达式,$ν= br^2+2lnc $和$λ= ln(1+ar^2+br^4)$来开发球形对称时空的运动方程。为了达到未知常数的值,我们考虑了$ CEN〜X-3 $,$ EXO〜1785-248 $和$ LMC〜X-4 $ Star Models的观察数据。此外,通过使用评估的溶液形式,我们提供了许多方面,这些方面由身体状态,例如有效的能量密度,径向和横压的成分,能量条件,能量条件,反对力平衡的稳定性,声音速度,质量 - 拉迪乌斯关系,表面红移,紧凑型,紧凑型参数,绝热参数,绝热性Index和Anisotropic Anisotropic soumerement。可以观察到所有这些特征遵循物理上接受的模式,结果结果在实验范围内,它描述了我们提出的$ f(\ Mathcal {g})$重力模型的可行性。

This paper is devoted to explore some relativistic configurations of stellar objects for static spherically symmetric structures in the context of modified $f(\mathcal{G})$ gravity, by exploiting the Tolman-Kuchowicz spacetime [1,2]. We develop the equations of motion for spherically symmetric spacetime in the presence of anisotropic matter distribution by considering the physically valid expressions of the metric potentials, $ν=Br^2+2lnC$ and $λ=ln(1 + ar^2+br^4)$. To attain the values of the unknown constants we consider the observational data of $Cen~ X-3$, $EXO ~1785-248$ and $LMC~ X-4$ star models. Further, by using evaluated form of the solutions we provide many aspects which are described by the physical status like effective energy density, components of radial and transverse pressure, energy conditions, stability against equilibrium of the forces, speed of sound, mass-radius relation, surface redshift, compactness parameter, adiabatic index and anisotropic measurement. It is observed that all these features follow physically accepted patterns and the resulting outcome is in the experimental range which depicts the viability of our presented $f(\mathcal{G})$ gravity models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源