论文标题

新的$ p $ -adic lipschitz功能和多维汉瑟的引理

A new class of $p$-adic Lipschitz functions and multidimensional Hensel's Lemma

论文作者

Bolivar-Barbosa, Fausto, León-Cardenal, Edwin, Rodríguez-Vega, J. J.

论文摘要

在这项工作中,我们在几个变量中研究$ p $ - ad的连续函数,以$ \ mathbb {z} _p $上的值进行值。我们描述了这些功能的正顺式范德,并在几个变量中研究了各种Lipschitz条件,从而推广了Anashin的先前工作。特别是,我们介绍了新的$ P $ -Adic Lipschitz功能,并研究其某些属性。我们还证明了Hensel在这一新功能中的提升引理,从而推广了Yurova和Khrennikov的先前结果。

In this work we study $p$-adic continuous functions in several variables taking values on $\mathbb{Z}_p$. We describe the orthonormal van der Put base of these functions and study various Lipschitz conditions in several variables, generalizing previous work of Anashin. In particular, we introduce a new class of $p$-adic Lipschitz functions and study some of their properties. We also prove a Hensel's lifting lemma for this new class of functions, generalizing previous results of Yurova and Khrennikov.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源