论文标题
BigeArthnet数据集,具有新的类引用,用于遥感图像理解
BigEarthNet Dataset with A New Class-Nomenclature for Remote Sensing Image Understanding
论文作者
论文摘要
本文介绍了Bigearthnet,它是一个大型Sentinel-2多光谱图像数据集,具有新的类命名法以推进遥感(RS)的深度学习(DL)研究。 BigeArthnet由590,326个图像贴片由Corine Land Cover Cover(CLC)地图(CLC)图提供的2018年最详细的级别3级命名术语组成。最初的研究表明,某些CLC类仅通过考虑Sentinel-2图像来准确地描述了一些具有挑战性。为了提高bigearthnet的有效性,在本文中,我们引入了一种替代类 - 提示,以允许DL模型更好地学习,并描述Sentinel-2图像的复杂空间和光谱信息内容。这是通过根据Sentinel-2图像的属性在19个类的新命名法中根据Sentinel-2图像的属性来解释和安排CLC级命名法实现的。然后,在多标签分类的背景下,在最新的DL模型中使用了BigeArthnet的新类提示。结果表明,在bigearthnet上从头开始训练的模型优于预先培训的模型,尤其是与某些复杂类别(包括农业,其他植被和自然环境)有关的模型。所有DL模型均可在http://bigearth.net/#downloads上公开获得,提供了一个重要的资源,以指导RS图像分析的未来进度。
This paper presents BigEarthNet that is a large-scale Sentinel-2 multispectral image dataset with a new class nomenclature to advance deep learning (DL) studies in remote sensing (RS). BigEarthNet is made up of 590,326 image patches annotated with multi-labels provided by the CORINE Land Cover (CLC) map of 2018 based on its most thematic detailed Level-3 class nomenclature. Initial research demonstrates that some CLC classes are challenging to be accurately described by considering only Sentinel-2 images. To increase the effectiveness of BigEarthNet, in this paper we introduce an alternative class-nomenclature to allow DL models for better learning and describing the complex spatial and spectral information content of the Sentinel-2 images. This is achieved by interpreting and arranging the CLC Level-3 nomenclature based on the properties of Sentinel-2 images in a new nomenclature of 19 classes. Then, the new class-nomenclature of BigEarthNet is used within state-of-the-art DL models in the context of multi-label classification. Results show that the models trained from scratch on BigEarthNet outperform those pre-trained on ImageNet, especially in relation to some complex classes including agriculture, other vegetated and natural environments. All DL models are made publicly available at http://bigearth.net/#downloads, offering an important resource to guide future progress on RS image analysis.