论文标题

关于覆盖数字,年轻图和posets的局部维度

On Covering Numbers, Young Diagrams, and the Local Dimension of Posets

论文作者

Damásdi, Gábor, Felsner, Stefan, Girão, António, Keszegh, Balázs, Lewis, David, Nagy, Dániel T., Ueckerdt, Torsten

论文摘要

我们研究覆盖数字和局部覆盖数字,相对于差异图和完整的两分图。特别是,我们表明,在带有$ \ binom {2k} {k} $ steps的年轻图的每一个封面中,带有广义矩形的步骤,图中有一排或列,至少由$ k+1 $矩形使用,并证明这是最好的。这回答了Kim,Martin,Masa的两个问题, - 差异图的本地完整二手盖号码是多少? - 是否有一系列图形序列具有恒定的局部差异图盖号码和无界的本地完整两分盖号码? 我们将这些本地覆盖数字的研究添加到了下边界和一些示例中。遵循Kim \ emph {等},我们在本地覆盖数字上使用结果,为高度〜2的部分有序集的局部维度提供下限和上限。我们讨论了与布尔晶格有关的一些POSET的局部维度,并表明由布尔晶格的前两层引起的POSET具有局部尺寸$(1 + O(1))\ log_2 \ log_2 n $。我们以一些关于Digraphs和Ferrers尺寸的覆盖数字的评论。

We study covering numbers and local covering numbers with respect to difference graphs and complete bipartite graphs. In particular we show that in every cover of a Young diagram with $\binom{2k}{k}$ steps with generalized rectangles there is a row or a column in the diagram that is used by at least $k+1$ rectangles, and prove that this is best-possible. This answers two questions by Kim, Martin, Masa{ř}{\'ı}k, Shull, Smith, Uzzell, and Wang (Europ. J. Comb. 2020), namely: - What is the local complete bipartite cover number of a difference graph? - Is there a sequence of graphs with constant local difference graph cover number and unbounded local complete bipartite cover number? We add to the study of these local covering numbers with a lower bound construction and some examples. Following Kim \emph{et al.}, we use the results on local covering numbers to provide lower and upper bounds for the local dimension of partially ordered sets of height~2. We discuss the local dimension of some posets related to Boolean lattices and show that the poset induced by the first two layers of the Boolean lattice has local dimension $(1 + o(1))\log_2\log_2 n$. We conclude with some remarks on covering numbers for digraphs and Ferrers dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源