论文标题

$ z $ - 还原群的有限性

Finiteness of $z$-classes in reductive groups

论文作者

Garge, Shripad M., Singh, Anupam

论文摘要

让$ k $是一个完美的字段,使得每$ n $都有有限的许多场扩展,直至同构,$ k $ $ n $。如果$ g $是$ k $以上的还原代数组,其特征非常适合$ g $,那么我们证明$ g(k)$只有有限的$ z $ charlasses。 对于每个没有上述有限属性的完美字段$ k $,我们表明存在$ g $以上的$ g $以上,因此$ g(k)$具有无限的许多$ z $ - 类别。

Let $k$ be a perfect field such that for every $n$ there are only finitely many field extensions, up to isomorphism, of $k$ of degree $n$. If $G$ is a reductive algebraic group defined over $k$, whose characteristic is very good for $G$, then we prove that $G(k)$ has only finitely many $z$-classes. For each perfect field $k$ which does not have the above finiteness property we show that there exist groups $G$ over $k$ such that $G(k)$ has infinitely many $z$-classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源