论文标题
FPCR-net:光流估计的特征锥体相关性和残留重建
FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for Optical Flow Estimation
论文作者
论文摘要
在视频分析领域,光流估计是一个重要但具有挑战性的问题。卷积神经网络的不同语义水平/层的特征可以提供不同粒度的信息。为了利用这种灵活而全面的信息,我们提出了一个半监督的特征锥体相关性和残留重建网络(FPCR-NET),以从框架对中进行光流估计。它由两个主要模块组成:金字塔相关映射和残留重建。金字塔相关映射模块通过汇总不同尺度的特征以形成多级成本量来利用全球/本地贴片的多尺度相关性。残留重建模块旨在重建每个阶段较细的光流的副频高频残差。基于金字塔相关映射,我们进一步提出了一个相关 - 射击归一化(CWN)模块,以有效利用相关依赖性。实验结果表明,所提出的方案可实现最先进的性能,分别针对Sintel Dataset的最终通过,就竞争基线方法(Flownetet2,LiteFlownet和PWC-net)而言,在平均终点误差(AEE)方面提高了0.80、1.15和0.10。
Optical flow estimation is an important yet challenging problem in the field of video analytics. The features of different semantics levels/layers of a convolutional neural network can provide information of different granularity. To exploit such flexible and comprehensive information, we propose a semi-supervised Feature Pyramidal Correlation and Residual Reconstruction Network (FPCR-Net) for optical flow estimation from frame pairs. It consists of two main modules: pyramid correlation mapping and residual reconstruction. The pyramid correlation mapping module takes advantage of the multi-scale correlations of global/local patches by aggregating features of different scales to form a multi-level cost volume. The residual reconstruction module aims to reconstruct the sub-band high-frequency residuals of finer optical flow in each stage. Based on the pyramid correlation mapping, we further propose a correlation-warping-normalization (CWN) module to efficiently exploit the correlation dependency. Experiment results show that the proposed scheme achieves the state-of-the-art performance, with improvement by 0.80, 1.15 and 0.10 in terms of average end-point error (AEE) against competing baseline methods - FlowNet2, LiteFlowNet and PWC-Net on the Final pass of Sintel dataset, respectively.