论文标题

基于时间依赖的Schrodinger方程的高阶积分方程求解器

A high-order integral equation-based solver for the time-dependent Schrodinger equation

论文作者

Kaye, Jason, Barnett, Alex, Greengard, Leslie

论文摘要

我们基于其作为Volterra积分方程的重新制作,引入了一种数值方法,用于解决时间依赖性的Schrodinger方程。我们介绍了该方法的版本,既适合周期性边界条件,又是针对紧凑的初始数据和潜力的自由空间问题。可能包括空间均匀的电场,使该求解器适用于轻度相互作用的模拟。 使用Volterra公式的主要计算挑战是应用依赖时空历史的积分运算符的应用。这可以通过将解决方案投影到一组傅立叶模式中来实现,并通过简单的复发将其系数从一个时间步骤更新到另一个时间步骤。在周期性的情况下,模式是通常的傅立叶系列的模式,快速傅立叶变换(FFT)用于在物理和频域网格之间交替。在自由空间案例中,光谱绿色功能的振荡行为使我们使用通过离散逆傅里叶变换的轮廓变形获得的一组复杂频率傅立叶模式,我们根据FFT开发了相应的快速变换。 我们的方法与伪谱方法有关,但适用于积分而不是通常的差分表述。这有几个优点:它避免了对人工边界条件的需求,承认简单,廉价的高阶隐式时间行进方案,并且自然包含时间依赖的电位。我们在一个和二维中介绍了示例,显示了周期性和自由空间问题的空间的光谱精度以及时间的八阶精度。

We introduce a numerical method for the solution of the time-dependent Schrodinger equation with a smooth potential, based on its reformulation as a Volterra integral equation. We present versions of the method both for periodic boundary conditions, and for free space problems with compactly supported initial data and potential. A spatially uniform electric field may be included, making the solver applicable to simulations of light-matter interaction. The primary computational challenge in using the Volterra formulation is the application of a space-time history dependent integral operator. This may be accomplished by projecting the solution onto a set of Fourier modes, and updating their coefficients from one time step to the next by a simple recurrence. In the periodic case, the modes are those of the usual Fourier series, and the fast Fourier transform (FFT) is used to alternate between physical and frequency domain grids. In the free space case, the oscillatory behavior of the spectral Green's function leads us to use a set of complex-frequency Fourier modes obtained by discretizing a contour deformation of the inverse Fourier transform, and we develop a corresponding fast transform based on the FFT. Our approach is related to pseudo-spectral methods, but applied to an integral rather than the usual differential formulation. This has several advantages: it avoids the need for artificial boundary conditions, admits simple, inexpensive high-order implicit time marching schemes, and naturally includes time-dependent potentials. We present examples in one and two dimensions showing spectral accuracy in space and eighth-order accuracy in time for both periodic and free space problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源