论文标题

与浓缩咖啡对普朗克大规模泡沫的限制

A limit on Planck-scale froth with ESPRESSO

论文作者

Cooke, Ryan, Welsh, Louise, Fumagalli, Michele, Pettini, Max

论文摘要

一些量子重力模型预测,由于量子的波动,时空的结构是“泡沫”。尽管预计效果很小,但是如果这些时空波动在很大距离内生长,则光子的初始状态(例如其能量)会逐渐被光子繁殖。因此,在这些模型中,由于时空波动在较大的距离内,即使是最单调的光源也将逐渐分散在能量上。在本文中,我们使用在非常大的望远镜上用浓缩咖啡获得的科学验证观察结果,将新颖的时空波动的生长束缚。为了实现这一目标,我们直接测量由红移Z = 2.34处的静态气云产生的狭窄Fe II吸收线的宽度,对应于〜5.8 GPC。使用一个启发式模型,其中能量波动随着sigma_e / e =(E / e_p)^alpha而生长,其中e_p = 1.22 x 10^28 eV是普朗克能量,我们排除了具有alpha <0.634的模型,包括量子波动的模型,其中量子波动是随机步行过程(alpha = 0.5)。最后,我们提出了一种新的形式主义,其中从连续分布中得出以离散时空步骤产生的不确定性。我们得出的结论是,如果光子在每个步骤中都采取离散步骤,并在每个步骤中积累了普朗克尺寸的不确定性,那么我们的意式浓缩咖啡观察结果要求步长必须至少> 10^13.2 l_p,其中l_p是planck的长度。

Some models of quantum gravity predict that the very structure of spacetime is `frothy' due to quantum fluctuations. Although the effect is expected to be tiny, if these spacetime fluctuations grow over a large distance, the initial state of a photon, such as its energy, is gradually washed out as the photon propagates. Thus, in these models, even the most monochromatic light source would gradually disperse in energy due to spacetime fluctuations over large distances. In this paper, we use science verification observations obtained with ESPRESSO at the Very Large Telescope to place a novel bound on the growth of spacetime fluctuations. To achieve this, we directly measure the width of a narrow Fe II absorption line produced by a quiescent gas cloud at redshift z=2.34, corresponding to a comoving distance of ~5.8 Gpc. Using a heuristic model where the energy fluctuations grow as sigma_E / E = (E/E_P)^alpha, where E_P = 1.22 x 10^28 eV is the Planck energy, we rule out models with alpha < 0.634, including models where the quantum fluctuations grow as a random walk process (alpha = 0.5). Finally, we present a new formalism where the uncertainty accrued at discrete spacetime steps is drawn from a continuous distribution. We conclude, if photons take discrete steps through spacetime and accumulate Planck-scale uncertainties at each step, then our ESPRESSO observations require that the step size must be at least >10^13.2 L_P, where L_P is the Planck length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源