论文标题

使用机器学习搜索4FGL无相关资源中的AGN和PULSAR候选人

Searching for AGN and Pulsar Candidates in 4FGL Unassociated Sources Using Machine Learning

论文作者

Zhu, Kerui, Kang, Shi-Ju, Zheng, Yong-Gang

论文摘要

据报道,在第四\ emph {fermi}中,据报道,包括3207个活跃的银河系核(239个脉冲核,1336个无伴侣,92个源与Blazar在低半层的Latital和190其他源相关联)中,包括3207个活跃的银河核(AGN),239个Pulsars,1339个脉冲传播源,包括3207个活跃的银河系核(239 pulsars),包括3207个活跃的银河核(239 pulsars,1339 pulsars,1339 pulsars,1339),在第四\ emph {fermi}中。我们使用两个不同的监督机器学习分类器,并结合4FGL拟合表的直接观察参数,以搜索1336年无相关来源中可能归类为AGN和PULSAR的来源。为了减少样品大小较大差异引起的误差,我们将分类过程分为两个单独的步骤,以识别AGN和脉冲星。首先,我们从所有样品中选择已鉴定的AGN,然后从剩余的脉冲节中选择已识别的脉冲星。使用与K-S测试和随机森林(RF)特征重要性测量的功能相关的4FGL源或确定为AGN,PULSARS和其他来源,我们对分类器模型进行了培训,优化和测试。然后,将模型应用于对1336个非相关来源进行分类。根据两个分类器的计算结果,我们显示了每个分类器给出的非相关源的灵敏度,特异性,准确性以及类别。第一步中获得的准确性约为$ 95 \%$;在第二步中,获得的总体准确性约为$ 80 \%$。结合了两个分类器的结果,我们预测有583个AGN型候选者,115个PULSAR型候选者,154种其他类型的$γ$ -Ray候选者和484种不确定类型。

In the fourth \emph{Fermi} Large Area Telescope source catalog (4FGL), 5064 $γ$-ray sources are reported, including 3207 active galactic nuclei (AGNs), 239 pulsars, 1336 unassociated sources, 92 sources with weak association with blazar at low Galactic latitude and 190 other sources. We employ two different supervised machine learning classifiers, combined with the direct observation parameters given by the 4FGL fits table, to search for sources potentially classified as AGNs and pulsars in the 1336 unassociated sources. In order to reduce the error caused by the large difference in the sizes of samples, we divide the classification process into two separate steps in order to identify the AGNs and the pulsars. First, we select the identified AGNs from all of the samples, and then select the identified pulsars from the remaining. Using the 4FGL sources associated or identified as AGNs, pulsars, and other sources with the features selected through the K-S test and the random forest (RF) feature importance measurement, we trained, optimized, and tested our classifier models. Then, the models are applied to classify the 1336 unassociated sources. According to the calculation results of the two classifiers, we show the sensitivity, specificity, accuracy in each step, and the class of unassociated sources given by each classifier. The accuracy obtained in the first step is approximately $95\%$; in the second step, the obtained overall accuracy is approximately $80\%$. Combining the results of the two classifiers, we predict that there are 583 AGN-type candidates, 115 pulsar-type candidates, 154 other types of $γ$-ray candidates, and 484 of uncertain types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源