论文标题
使用大数据提供的情感分析(SOMIBIT)从社交媒体中发现的知识发现
Knowledge Discovery from Social Media using Big Data provided Sentiment Analysis (SoMABiT)
论文作者
论文摘要
在当今竞争激烈的商业世界中,了解客户需求和面向市场的生产是行业的关键成功因素。为此,使用有效的分析算法可以更好地了解客户反馈并改善下一代产品。因此,在日常生活中使用社交媒体的急剧增加为市场分析提供了有益的来源。但是,对于这种不同的和多结构的数据源,传统的分析算法和方法如何扩展是这方面的主要挑战。本文介绍并讨论了使用大数据技术作为社交媒体分析平台的Somibit的技术和科学重点。为了发现社交媒体的知识,已经采用了情感分析。与最先进的技术相比,使用MapReduce并将分布式算法用于一个可以扩展任何数据量并提供社交媒体驱动的知识的集成平台的主要新颖性。
In todays competitive business world, being aware of customer needs and market-oriented production is a key success factor for industries. To this aim, the use of efficient analytic algorithms ensures a better understanding of customer feedback and improves the next generation of products. Accordingly, the dramatic increase in using social media in daily life provides beneficial sources for market analytics. But how traditional analytic algorithms and methods can scale up for such disparate and multi-structured data sources is the main challenge in this regard. This paper presents and discusses the technological and scientific focus of the SoMABiT as a social media analysis platform using big data technology. Sentiment analysis has been employed in order to discover knowledge from social media. The use of MapReduce and developing a distributed algorithm towards an integrated platform that can scale for any data volume and provide a social media-driven knowledge is the main novelty of the proposed concept in comparison to the state-of-the-art technologies.