论文标题

一个常见的操作图片框架利用数据融合和深度学习

A Common Operating Picture Framework Leveraging Data Fusion and Deep Learning

论文作者

Ortiz, Benjamin, Lindenbaum, David, Nassar, Joseph, Lammers, Brendan, Wahl, John, Mangum, Robert, Smith, Margaret, Bosch, Marc

论文摘要

组织开始意识到数据和数据驱动算法模型的综合力量,以获得见解,情境意识并提高其使命。获得见解的一个普遍挑战是连接固有的不同数据集。这些数据集(例如,地理编码的功能,视频流,原始文本,社交网络数据等)每个单独提供了非常狭窄的答案;但是,他们可以共同提供新的功能。在这项工作中,我们提出了一个数据融合框架,用于加速处理,开发和传播(PED)的解决方案。我们的平台是一系列服务,通过利用深度学习和其他处理方式来从多个数据源(每个分开)中提取信息。这些信息由执行数据关联,搜索和其他建模操作的一组分析引擎融合,以结合不同数据源的信息。结果,将感兴趣的事件检测到,地理分配,记录并呈现为共同的操作图片。这种常见的操作图片使用户可以实时可视化所有数据源及其集体合作。此外,已通过框架实施了法医活动并提供了。用户可以查看存档结果,并将其与操作环境的最新快照进行比较。在我们的第一次迭代中,我们专注于视觉数据(FMV,WAMI,CCTV/PTZ-CAMERAS,开源视频等)和AIS数据流(卫星和地面来源)。作为概念验证,在我们的实验中,我们显示了如何将FMV检测与来自AIS源的血管跟踪信号结合使用,以确认身份,提示和提示的空中侦察并监测该区域中的血管活动。

Organizations are starting to realize of the combined power of data and data-driven algorithmic models to gain insights, situational awareness, and advance their mission. A common challenge to gaining insights is connecting inherently different datasets. These datasets (e.g. geocoded features, video streams, raw text, social network data, etc.) per separate they provide very narrow answers; however collectively they can provide new capabilities. In this work, we present a data fusion framework for accelerating solutions for Processing, Exploitation, and Dissemination (PED). Our platform is a collection of services that extract information from several data sources (per separate) by leveraging deep learning and other means of processing. This information is fused by a set of analytical engines that perform data correlations, searches, and other modeling operations to combine information from the disparate data sources. As a result, events of interest are detected, geolocated, logged, and presented into a common operating picture. This common operating picture allows the user to visualize in real time all the data sources, per separate and their collective cooperation. In addition, forensic activities have been implemented and made available through the framework. Users can review archived results and compare them to the most recent snapshot of the operational environment. In our first iteration we have focused on visual data (FMV, WAMI, CCTV/PTZ-Cameras, open source video, etc.) and AIS data streams (satellite and terrestrial sources). As a proof-of-concept, in our experiments we show how FMV detections can be combined with vessel tracking signals from AIS sources to confirm identity, tip-and-cue aerial reconnaissance, and monitor vessel activity in an area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源