论文标题
公共竖琴径向速度数据库纠正了系统错误
A public HARPS radial velocity database corrected for systematic errors
论文作者
论文摘要
语境。竖琴光谱仪提供最先进的恒星径向速度(RV)测量值,精度低至1 m/s。使用专用数据还原软件(DRS)提取光谱,并由CCF用数值掩码计算RVS。目标。这项研究的目的是三个:(i)可轻松访问公共HARPS RV数据集。 (ii)将新的公共服务管道应用于光谱,并生成更精确的RV数据集。 (iii)检查是否可以通过校正小的每晚系统效应来进一步提高RV的精度。方法。对于用竖琴观察的每个星星,我们从ESO档案中下载了公开可用的光谱,并用Serval重新计算了RVS。然后,我们通过平均安静的恒星的RV来计算每晚的零点(NZP)。结果。分析RV散布<5 m/s的最RV Quiet恒星的RV,我们发现Serval RV平均比DRS RVS更精确了几%。我们发现了三个重要的系统效应,它们的大小与用于RV推导的软件无关:(i)大小为1 m/s的随机变化; (ii)长期变化,幅度为1 m/s,典型的时间表为几周; (iii)20-30 NZP显着偏离了几m/s。此外,我们发现在2015年干预之前的DRS RV中以及其后的Serval RV中发现了小(<1 m/s)的夜间夜间内部漂移。我们确认,2015年的纤维交换引起了不连续的RV跳跃,这在很大程度上取决于观察到的恒星的光谱类型:从晚期F型恒星的14 m/s到M矮人的-3 m/s。结论。可以从用户友好的公共数据库中检索我们的NZP校正的Serval RV。它为约3000星提供了超过212 000辆RV,以及许多辅助信息,NZP校正,各种活动指数和DRS-CCF产品。
Context. The HARPS spectrograph provides state-of-the-art stellar radial velocity (RV) measurements with a precision down to 1 m/s. The spectra are extracted with a dedicated data-reduction software (DRS) and the RVs are computed by CCF with a numerical mask. Aims. The aim of this study is three-fold: (i) Create easy access to the public HARPS RV data set. (ii) Apply the new public SERVAL pipeline to the spectra, and produce a more precise RV data set. (iii) Check whether the precision of the RVs can be further improved by correcting for small nightly systematic effects. Methods. For each star observed with HARPS, we downloaded the publicly available spectra from the ESO archive and recomputed the RVs with SERVAL. We then computed nightly zero points (NZPs) by averaging the RVs of quiet stars. Results. Analysing the RVs of the most RV-quiet stars, whose RV scatter is < 5 m/s, we find that SERVAL RVs are on average more precise than DRS RVs by a few percent. We find three significant systematic effects, whose magnitude is independent of the software used for the RV derivation: (i) stochastic variations with a magnitude of 1 m/s; (ii) long-term variations, with a magnitude of 1 m/s and a typical timescale of a few weeks; and (iii) 20-30 NZPs significantly deviating by a few m/s. In addition, we find small (< 1 m/s) but significant intra-night drifts in DRS RVs before the 2015 intervention, and in SERVAL RVs after it. We confirm that the fibre exchange in 2015 caused a discontinuous RV jump, which strongly depends on the spectral type of the observed star: from 14 m/s for late F-type stars, to -3 m/s for M dwarfs. Conclusions. Our NZP-corrected SERVAL RVs can be retrieved from a user-friendly, public database. It provides more than 212 000 RVs for about 3000 stars along with many auxiliary information, NZP corrections, various activity indices, and DRS-CCF products.