论文标题
$ c^0 $ - 拓扑熵的稳定性,用于接触型
$C^0$-Stability of Topological Entropy for Contactomorphisms
论文作者
论文摘要
拓扑熵并不是半脑的较低:动态系统的小扰动会导致熵的崩溃。在本说明中,我们表明,对于某些特殊类型的动态系统(地球流,REEB流动,积极的接触符号))拓扑熵至少在存在非平凡连续下部结合的意义上是稳定的,鉴于某些同源性不变的是呈指数呈呈指数。
Topological entropy is not lower semi-continous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in the sense that there exists a nontrivial continuous lower bound, given that a certain homological invariant grows exponentially.