论文标题
分形式拓扑顺序的量子相变
Quantum phase transition of fracton topological orders
论文作者
论文摘要
Fracton拓扑顺序(FTO)是三个空间维度的相关阶段的新分类,其基础状态退化(GSD)随系统大小而扩展,而分数激发却是不动或限制性迁移率的。由于GSD的拓扑起源,FTO可以免疫局部扰动,而预计足够强大的全球外部扰动将破坏秩序。然而,拓扑过渡的关键点非常具有挑战性。在这项工作中,我们建议表征外部术语引起的I型FTO的量子相变,并开发出一种理论来分析过渡的临界点。特别是,对于产生lineon型激发的外部扰动项,我们预测了量子相变的临界点的通用公式,其特征在于GSD的破裂。该理论适用于包括X-Cube模型在内的FTO的董事会类别,以及在扰动下更通用的FTO模型产生二维(2D)或3D激发,我们预测临界点的上和下限。我们的工作迈出了一步,从分析表征通用分布订单的量子相变。
Fracton topological order (FTO) is a new classification of correlated phases in three spatial dimensions with topological ground state degeneracy (GSD) scaling up with system size, and fractional excitations which are immobile or have restricted mobility. With the topological origin of GSD, FTO is immune to local perturbations, whereas a strong enough global external perturbation is expected to break the order. The critical point of the topological transition is however very challenging to identify. In this work, we propose to characterize quantum phase transition of the type-I FTOs induced by external terms and develop a theory to study analytically the critical point of the transition. In particular, for the external perturbation term creating lineon-type excitations, we predict a generic formula for the critical point of the quantum phase transition, characterized by the breaking-down of GSD. This theory applies to a board class of FTOs, including X-cube model, and for more generic FTO models under perturbations creating two-dimensional (2D) or 3D excitations, we predict the upper and lower limits of the critical point. Our work makes a step in characterizing analytically the quantum phase transition of generic fracton orders.