论文标题

使用深卷积神经网络MR成像中的脊柱转移分割

Spinal Metastases Segmentation in MR Imaging using Deep Convolutional Neural Networks

论文作者

Hille, Georg, Steffen, Johannes, Dünnwald, Max, Becker, Mathias, Saalfeld, Sylvia, Tönnies, Klaus

论文摘要

这项研究的目的是使用基于深度学习的方法在诊断MR图像中进行脊柱转移。这种病变的分割可以提出朝着增强治疗计划和验证的关键步骤,以及在微创和图像引导的手术(如射线传频消融)期间的干预支持。为此,我们使用了一个U-NET之类的结构,该体系结构接受了40例临床病例,包括裂解和硬化病变类型以及各种MR序列。我们提出的方法对影响分割质量的各种因素进行了评估,例如使用的MR序列和输入维度。我们使用骰子系数,灵敏度和特异性率进行定量评估了我们的实验。与经过专业注释的病变分段相比,实验得出了有希望的结果,平均骰子得分高达77.6%,平均灵敏度率高达78.9%。据我们所知,我们提出的研究是第一个解决这个特定问题的研究之一,该问题限制了与相关工作的直接可比性。关于类似的基于深度学习的病变细分,例如在肝MR图像或脊柱CT图像中,我们的实验显示出相似或在某些方面的分割质量。总体而言,我们的自动方法可以在这项具有挑战性和雄心勃勃的任务中提供几乎专家的细分精度。

This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach. Segmentation of such lesions can present a pivotal step towards enhanced therapy planning and validation, as well as intervention support during minimally invasive and image-guided surgeries like radiofrequency ablations. For this purpose, we used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences. Our proposed method was evaluated with regards to various factors influencing the segmentation quality, e.g. the used MR sequences and the input dimension. We quantitatively assessed our experiments using Dice coefficients, sensitivity and specificity rates. Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%. To our best knowledge, our proposed study is one of the first to tackle this particular issue, which limits direct comparability with related works. In respect to similar deep learning-based lesion segmentations, e.g. in liver MR images or spinal CT images, our experiments showed similar or in some respects superior segmentation quality. Overall, our automatic approach can provide almost expert-like segmentation accuracy in this challenging and ambitious task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源