论文标题
粒子系统
Particle systems with coordination
论文作者
论文摘要
我们考虑了空间分支合并过程的概括,在这种过程中,个人的行为并非独立,相反,个人倾向于同时采取行动。我们表明这些过程具有矩二,这恰好是跳跃的多维扩散。 Moment Duality提供了一个一般框架来研究此类过程中该过程的结构特性。我们提出了一些条件,在某些情况下,该过程的期望不受协调的影响,并评论协调对方差的影响。我们更详细地分析了几个示例,包括嵌套结合,带有选择和协调迁移的围血中结合,以及抛物线的Anderson模型。
We consider a generalization of spatial branching coalescing processes in which the behaviour of individuals is not (necessarily) independent, on the contrary, individuals tend to take simultaneous actions. We show that these processes have moment duals, which happen to be multidimensional diffusions with jumps. Moment duality provides a general framework to study structural properties of the processes in this class. We present some conditions under which the expectation of the process is not affected by coordination and comment on the effect of coordination on the variance. We analyse several examples in more detail, including the nested coalescent, the peripatric coalescent with selection and coordinated migration, and the Parabolic Anderson Model.