论文标题
Scail:分类器的权重缩放级别的增量学习
ScaIL: Classifier Weights Scaling for Class Incremental Learning
论文作者
论文摘要
如果AI代理需要从流中集成数据,则增量学习是有用的。如果代理在有限的计算预算上运行并且对过去数据的内存有界,则问题是无关紧要的。在深度学习的方法中,恒定的计算预算需要用于所有增量状态的固定体系结构。有限的内存会产生数据不平衡,而有利于新类别,并且出现了对它们的预测偏见。除基本的网络培训外,通常还可以通过引入数据平衡步骤来抵消这种偏见。我们偏离了这种方法,并提出了过去班级分类器权重的简单但有效的缩放,以使其与新班的相比。缩放利用增量状态级别的统计信息,并应用于在类的初始状态中学习的分类器,以便从其所有可用数据中获利。我们还质疑通过在存在有限的内存的存在下将其与香草微调进行比较,通过将其与香草微调进行比较,对增量学习算法的效用。使用四个公共数据集对竞争基线进行评估。结果表明,分类器的权重缩放和去除蒸馏都是有益的。
Incremental learning is useful if an AI agent needs to integrate data from a stream. The problem is non trivial if the agent runs on a limited computational budget and has a bounded memory of past data. In a deep learning approach, the constant computational budget requires the use of a fixed architecture for all incremental states. The bounded memory generates data imbalance in favor of new classes and a prediction bias toward them appears. This bias is commonly countered by introducing a data balancing step in addition to the basic network training. We depart from this approach and propose simple but efficient scaling of past class classifier weights to make them more comparable to those of new classes. Scaling exploits incremental state level statistics and is applied to the classifiers learned in the initial state of classes in order to profit from all their available data. We also question the utility of the widely used distillation loss component of incremental learning algorithms by comparing it to vanilla fine tuning in presence of a bounded memory. Evaluation is done against competitive baselines using four public datasets. Results show that the classifier weights scaling and the removal of the distillation are both beneficial.