论文标题
拓扑顶点/反vertex和超组理论
Topological Vertex/anti-Vertex and Supergroup Gauge Theory
论文作者
论文摘要
我们提出了一种新的顶点形式主义,称为反精制的拓扑顶点(简称抗vertex),以计算广义拓扑弦振幅,从而产生超组理论分区函数。我们展示了仪表理论与超级群体理论特有的卡拉比(Calabi-Yau几何学)之间的一对多对应关系,以及通过分析延续通过分析性延续,普通顶点形式主义与普通顶点形式主义与顶点/反vertex形式之间的关系。
We propose a new vertex formalism, called anti-refined topological vertex (anti-vertex for short), to compute the generalized topological string amplitude, which gives rise to the supergroup gauge theory partition function. We show the one-to-many correspondence between the gauge theory and the Calabi--Yau geometry, which is peculiar to the supergroup theory, and the relation between the ordinary vertex formalism and the vertex/anti-vertex formalism through the analytic continuation.