论文标题
具有可变系数的半线性Euler-Bernoulli光束方程的周期性解决方案
Periodic solutions of a semilinear Euler-Bernoulli beam equation with variable coefficients
论文作者
论文摘要
本文致力于研究具有可变系数的半线性欧拉 - 伯努利束方程的周期溶液。可以描述这种数学模型的无限,自由,未抑制的平面内弯曲振动的薄弹性梁。当频率$ω= \ frac {2π} {t} $是理性的时,研究具有可变系数的光束操作员的某些属性。当非线性项是单调并有界时,我们获得了周期性解决方案的存在。
This paper is devoted to the study of periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients. Such mathematical model may be described the infinitesimal, free, undamped in-plane bending vibrations of a thin straight elastic beam. When the frequency $ω=\frac{2π}{T}$ is rational, some properties of the beam operator with variable coefficients are investigated. We obtain the existence of periodic solutions when the nonlinear term is monotone and bounded.