论文标题

PDANET:金字塔密度感知注意网络,以进行准确的人群计数

PDANet: Pyramid Density-aware Attention Net for Accurate Crowd Counting

论文作者

Amirgholipour, Saeed, He, Xiangjian, Jia, Wenjing, Wang, Dadong, Liu, Lei

论文摘要

人群计数,即估计拥挤地区的人数,对研究界引起了极大的兴趣。尽管已经报告了许多尝试,但由于兴趣区域内人群密度的巨大变化以及人群中的严重阻塞,人群数量仍然是一个公开的现实世界问题。在本文中,我们提出了一个新型的金字塔密度感知注意力的网络,缩写为PDANET,它利用了注意力,金字塔量表功能和两个分支解码器模块,以进行密度感知的人群计数。 PDANET利用这些模块来提取不同的规模特征,专注于相关信息并抑制误导性信息。我们还通过独家感知的解码器(DAD)来解决不同图像之间拥挤水平的变化。为此,分类器评估输入特征的密度水平,然后将其传递到相应的高和低拥挤的爸爸模块。最后,我们通过将低人群密度图的总和作为空间注意力来产生总体密度图。同时,我们采用两种损失来为输入场景创建精确的密度图。在具有挑战性的基准数据集上进行的广泛评估很好地证明了所提出的PDANET的出色性能,从计数和生成的密度图的准确性比众所周知的艺术状态相比。

Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variations in crowd density within the interested area, and severe occlusion among the crowd. In this paper, we propose a novel Pyramid Density-Aware Attention-based network, abbreviated as PDANet, that leverages the attention, pyramid scale feature and two branch decoder modules for density-aware crowd counting. The PDANet utilizes these modules to extract different scale features, focus on the relevant information, and suppress the misleading ones. We also address the variation of crowdedness levels among different images with an exclusive Density-Aware Decoder (DAD). For this purpose, a classifier evaluates the density level of the input features and then passes them to the corresponding high and low crowded DAD modules. Finally, we generate an overall density map by considering the summation of low and high crowded density maps as spatial attention. Meanwhile, we employ two losses to create a precise density map for the input scene. Extensive evaluations conducted on the challenging benchmark datasets well demonstrate the superior performance of the proposed PDANet in terms of the accuracy of counting and generated density maps over the well-known state of the arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源