论文标题

1/8-BPS联轴器和出色的自动型功能

1/8-BPS Couplings and Exceptional Automorphic Functions

论文作者

Bossard, Guillaume, Kleinschmidt, Axel, Pioline, Boris

论文摘要

与$ \ MATHCAL {R}^4 $和$ \ nabla^4 \ Mathcal {r}^4 $耦合,其系数是U-Duality Group的Langlands-Eisenstein系列,系数$ \ Mathcal $ \ Mathcal {E} _} _ {(0,1) $ \ nabla^6 \ Mathcal {r}^4 $相互作用在圆环上压实的II型字符串的有效动作中的相互作用属于更通用的自动形态功能,该功能满足Poisson而不是Laplace-type等方程。在较早的工作中,有人提出,确切的系数是由特殊场理论中的两环积分给出的,其中全频谱在循环中运行,直到添加了特定的Langlands-Eisenstein系列。在这里,我们计算了这些自动形态功能的弱耦合和较大的半径扩展。我们发现与第三属的扰动弦理论完美一致,以及具有1/8-BPS Instantons的预期形式以及1/2-BPS Instantons和Anti-Instantons的预期形式。额外的Langlands-Eisenstein系列是由循环中运行的1/4-BPS状态的两环振幅之间的微妙取消,而三环幅度在环路中具有相互的1/2-BPS状态。对于$ d = 4 $,由于kawazumi-zhang不变性曲线与热带限制的kawazumi-zhang不变性之间的有趣身份以及在粒子和字符串的双晶格之间,因此,结果与粒子和字符串多重兴趣之间的双晶格总和之间的有趣的身份相吻合,这是一个协变属属弦振幅的替代提案。

Unlike the $\mathcal{R}^4$ and $\nabla^4\mathcal{R}^4$ couplings, whose coefficients are Langlands-Eisenstein series of the U-duality group, the coefficient $\mathcal{E}_{(0,1)}^{(d)}$ of the $\nabla^6\mathcal{R}^4$ interaction in the low-energy effective action of type II strings compactified on a torus $T^d$ belongs to a more general class of automorphic functions, which satisfy Poisson rather than Laplace-type equations. In earlier work, it was proposed that the exact coefficient is given by a two-loop integral in exceptional field theory, with the full spectrum of mutually 1/2-BPS states running in the loops, up to the addition of a particular Langlands-Eisenstein series. Here we compute the weak coupling and large radius expansions of these automorphic functions for any $d$. We find perfect agreement with perturbative string theory up to genus three, along with non-perturbative corrections which have the expected form for 1/8-BPS instantons and bound states of 1/2-BPS instantons and anti-instantons. The additional Langlands-Eisenstein series arises from a subtle cancellation between the two-loop amplitude with 1/4-BPS states running in the loops, and the three-loop amplitude with mutually 1/2-BPS states in the loops. For $d=4$, the result is shown to coincide with an alternative proposal in terms of a covariantised genus-two string amplitude, due to interesting identities between the Kawazumi-Zhang invariant of genus-two curves and its tropical limit, and between double lattice sums for the particle and string multiplets, which may be of independent mathematical interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源