论文标题

在有限的化学电位处探索党相位的党相位的阶段

Exploring the partonic phase at finite chemical potential in and out-of equilibrium

论文作者

Soloveva, O., Moreau, P., Oliva, L., Voronyuk, V., Kireyeu, V., Song, T., Bratkovskaya, E.

论文摘要

我们研究了Baryon化学势$μ_b$对平衡和外部夸克 - 杜伦 - 铂(QGP)性质的影响。平衡中QGP的描述基于动态准粒子模型(DQPM)的有效繁殖器和耦合,该模型匹配,该模型匹配,以重现lattice QCD的DeConfinement温度$ T_C $上方的partsononic System的状态方程。我们研究了运输系数,例如剪切粘度$η$和散装粘度的比率$ζ$,而不是熵密度$ s $,即$η/s $和$ζ/s $在$(t,μ)$平面中,并与其他模型结果进行比较,可在$μ_b= 0 $中使用。 QGP的均衡研究是在党派部门的Parton-Hadron-string动力学(PHSD)传输方法中进行的,该方法通过根据DQPM明确计算总和差异的党派散射横截面,并根据DQPM进行了总和差异零件散射截面,并在实际温度$ t $ $ t $ t $ $ t $ $ t $ $ t $μ_b$中进行评估,从而在每个单独的散布中进行。其$μ_b$依赖关系的痕迹在对称的AU+AU和不对称的Cu+Au碰撞中进行了研究,例如速度和$ M_T $ - 分布以及指示和椭圆流量系数$ v_1,v_2 $ v_2 $ v_2 $ 77 GEV $ \ le \ le \ le \ le \ le \ s_____________ nn。

We study the influence of the baryon chemical potential $μ_B$ on the properties of the Quark-Gluon-Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity $η$ and bulk viscosity $ζ$ over entropy density $s$, i.e. $η/s$ and $ζ/s$ in the $(T,μ)$ plane and compare to other model results available at $μ_B =0$. The out-of equilibrium study of the QGP is performed within the Parton-Hadron-String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections based on the DQPM and the evaluated at actual temperature $T$ and baryon chemical potential $μ_B$ in each individual space-time cell where partonic scattering takes place. The traces of their $μ_B$ dependences are investigated in different observables for symmetric Au+Au and asymmetric Cu+Au collisions such as rapidity and $m_T$- distributions and directed and elliptic flow coefficients $v_1, v_2$ in the energy range 7.7 GeV $\le \sqrt{s_{NN}}\le 200$ GeV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源