论文标题

GDPR合规性OWL2中的实时推理

Real Time Reasoning in OWL2 for GDPR Compliance

论文作者

Bonatti, P. A., Ioffredo, L., Petrova, I., Sauro, L., Siahaan, I. R.

论文摘要

本文展示了如何使用知识表示和推理技术来支持组织遵守GDPR,即新的欧洲数据保护法规。这项工作是在一个名为Special的欧洲H2020项目中进行的。数据使用策略,数据主体的同意和GDPR的选定片段被编码为OWL2的片段,称为PL(策略语言);合规性检查和策略验证将减少为包含检查和概念一致性检查。这项工作提出了GDPR提出的PL的表现力要求与特殊工业合作伙伴提供的用例产生的可伸缩性要求之间的令人满意的权衡。实时合规性检查是通过称为PLR的专业推理器来实现的,该推理器利用知识汇编和结构性补充技术。通过系统的实验分析了PLR原型实施的性能,并将其与其他重要原因者的性能进行了比较。此外,我们展示了如何通过进口技术来扩展PL和PLR以支持更丰富的本体。 PL及其与OWL2概况的集成构成了OWL2的新片段。我们还证明了一些负面的结果,这些结果涉及PL中不受限制推理的可行性以及对本体论导入的局限性。

This paper shows how knowledge representation and reasoning techniques can be used to support organizations in complying with the GDPR, that is, the new European data protection regulation. This work is carried out in a European H2020 project called SPECIAL. Data usage policies, the consent of data subjects, and selected fragments of the GDPR are encoded in a fragment of OWL2 called PL (policy language); compliance checking and policy validation are reduced to subsumption checking and concept consistency checking. This work proposes a satisfactory tradeoff between the expressiveness requirements on PL posed by the GDPR, and the scalability requirements that arise from the use cases provided by SPECIAL's industrial partners. Real-time compliance checking is achieved by means of a specialized reasoner, called PLR, that leverages knowledge compilation and structural subsumption techniques. The performance of a prototype implementation of PLR is analyzed through systematic experiments, and compared with the performance of other important reasoners. Moreover, we show how PL and PLR can be extended to support richer ontologies, by means of import-by-query techniques. PL and its integration with OWL2's profiles constitute new tractable fragments of OWL2. We prove also some negative results, concerning the intractability of unrestricted reasoning in PL, and the limitations posed on ontology import.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源