论文标题
Dirichlet特征值问题的新有限元方法
A new finite element approach for the Dirichlet eigenvalue problem
论文作者
论文摘要
在本文中,我们提出了一种新的有限元方法,该方法与经典的babuska-osborn理论不同,以近似迪里奇特征值。 Dirichlet特征值问题被提出为索引零的全体形态Fredholm操作员功能的特征值问题。使用符合有限元的元素,使用抽象近似理论证明了收敛性,用于全体形态操作员函数。光谱指标方法用于计算特征值。提出了一个数值示例来验证理论。
In this paper, we propose a new finite element approach, which is different than the classic Babuska-Osborn theory, to approximate Dirichlet eigenvalues. The Dirichlet eigenvalue problem is formulated as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. Using conforming finite elements, the convergence is proved using the abstract approximation theory for holomorphic operator functions. The spectral indicator method is employed to compute the eigenvalues. A numerical example is presented to validate the theory.